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P~BSTRACT

A system of linear elastic equations recently obtained for fiber rein-

forced composite materials is applied to some simple problems concerning the

transfer of load from the reinforcement to the matrix. The same equations are

applied to surface waves propagating in the direction of the fiber reinforce-

ment. Since the defined constants occurring in the above-mentioned linear

equations for a two—constituent composite material have never been measured ,

calculations cannot be performed. When the model is simplified sufficiently ,

the effective constants in the description can be partially estimated from the

known elastic constants of the individual constituents in the composite. With

the reduced equations calculations are performed for surface waves propagating

both in and normal to the direction of the fiber reinforcement. The calcula-

tions indicate the existence of a high (optical type) as well as a low (acoustic

type ) surface wave mode, both of which are dispersive. We believe the optical

type mode is an analytical consequence of the simplified model and does not

actually exist. The dispersion of the acoustic type surface wave mode could

provide a means of non-destructively evaluating the integrity of a fiber rein-

forced composite material.
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1. Introduction

In a recent investigation1 a system of linear elastic equations for a

two-constituent composite material was obtained from a general nonlinear system

for N—constituents. The general system of nonlinear equations was obtained

from a model of the composite consisting of interpenetrating solid continua,

in which the motion of a point of the combined continuum could be finite while

the relative motion of each of the constituents was constrained to be in-

finitesimal in order that the solid composite not rupture. The aforementioned

linear equations were written in explicit detail for the isotropic and trans-

versely isotropic symmetries. The linear elastic equations for the two—

constituent transversely isotropic composite obtained in the earlier work1

form the basis of the work presented here.

In this paper the aforementioned linear equations for the transversely

isotropic composite material are applied in the analysis of so’ne simple but

very interesting one-dimensional static load transfer problems and the propa-

• gation of straight—crested surface waves. In the two particular one-

dimensional static problems considered,axial loading is applied to the fiber

reinforcement which enters the unloaded matrix. In one case both the matrix

and reinforcement are held fixed at the supporting end, while in the other

case the reinforcement ends at some distance into the matrix. In both

cases the influence of gravity is included in the analysis. In each

instance the rate of transfer of stress from the reinforcement to the matrix

is determined in terms of the defined material coefficients of the two-

constituent composite as a byproduct of the solution of a simple system of

ordinary differential equations with constant coefficients. The treatment

of such problems within the framework of the theory of linear elasticity is

prohibitively complicated and such problems c~~ -~-~t even be mathematically

defined using the ordinary strength of materials approach.

- -  - - -  -- rn~~~~.-. ~~~~~~~~~~~~~ ~~~~~~~~~~~~ —- --- -— .- —.— — -——
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2.

In the case of surface wave propagation only the placement of fiber

reinforcement parallel to the free surface is considered. The formal solution

for surface wave propagation in the direction of the fiber reinforcement is

presented. However, since the material coefficients occurring in the theory

have never been measured for any composite, a calculation cannot be performed.

Nevertheless, if the resulting theory is reduced by making the plausible

simplifying physical assumptions, for certain cases of interest, that only

axial stress exists in the reinforcement and the entire interaction depends

only on the relative displacements of the constituents in the model, the

remaining unknown constants in the description can be partially estimated from

the known ordinary elastic constants. Then by making an additional assumption,

calculations can be performed. At this point it should be noted that when the

aforementioned simplification is made, the resulting linear equations are

identical with an earlier system due to Bedford and Stern2’
3
. The aforemen- —

tioned partial estimation of the unknown constants in the simplified descrip-

tion is made using a procedure due to Martin, Bedford and Stern
4
. With the

material constants thus determined the dispersive surface wave velocity has

been calculated for a glass fiber reinforced phenolic resin. In this simpli-

fied theory upper (in frequency) optical type surface wave branches are found

in addition to the lower acoustic type surface wave branches. It should be

mentioned that it is felt that the upper surface wave branch that occurs in

the simplified description will not occur in the full description because in

the latter case all the independent solutions of the differential equations

that remain coupled by the boundary conditions will probably not decay with

depth. In each case treated the acoustic type surface wave branch turns out

to be asymptotic to the non—dispersive surface wave velocity of the matrix at

very long wavelengths. It should be noted that the theory employed and, of
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3.

course, solutions presented are valid only for wavelengths long compared to

the spacing of the fiber reinforcement in much the same manner that the theory

of elasticity is valid only for wavelengths large compared to a lattice

spacing . However, because of the behavior of the branches , we obtain and

present results considerably beyond the range of validity of the theory.

Nevertheless, we indicate the limit of validity of the theory on each branch

plotted.

2. One—Dimensional Static Problems

In this section we consider some simple but interesting one—dimensional

static problems for two—constituent transversely isotropic composite materials.

In each instance the load is applied in the preferred direction of transverse

isotropy, which lies along the length of the parallel fibers, and it is

assumed that all displacement and relative displacement components transverse

to this direction are constrained to vanish and that the remaining displace-

ment variables are independent of the transverse coordinates. We consider

only problems that satisfy these criteria. Under these circumstances the

nontrivial linear constitutive equations take the form 5

= 

~ 22 
= 2~2u

3 3 
+ ~~~~~~~~~~ (2. 1)

1(
33 

= c
5u3 ~ 

+ Bo
W:~~~~

, ( 2 . 2 )

.‘ (1)
‘
~1l 

‘
~22 

= 

~5
’
~3,3 

+b3~’13,3 
(2.3)

A (1)
= ~6u3, 3 + b5w3 ~ 

(2. 4)

= - a2
w3 ,  (2.5)

where x3 is the preferred direction of transverse isotropy, u3 is the non-

zero displacement component of the center of mass of the combined two-
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constituent composite material and w~~ is the non—zero component of the

relative displacement of the continuum representing the matrix. We employ

Cartesian tensor notation and we have introduced the convention that a comma

followed by an index denotes partial differentiation with respect to a space

coordinate. The represent the components of the stress tensor for the

combined continuum and the represent the relative stress tensor which is

defined by

~LM 
= ~~~~~ — 

, r = ~~~/~ (2) 
, p = p

~~~ + , (2.6)

where and p Cm) represent the components of the stress tensor and mass

density, respectively, of each of the interpenetrating continua. The vector

field 
~M 

is related to the volumetric force of interaction between the two

constituents by the relation

( 2 . 7 )

where L~ 12 
is the volumetric force exerted by continuum 2 on continuum 1. At

this point it is to be noted that the ~~~~~ and do not represent the actual

components of stress and mass density of each of the constituents in the

composite, but only represent those quantities in each of the interpenetrating

continua, which occupy the same region of space and, respectively, represent

each constituent in the model. As a consequence, if Am and A~ represent the

areas occupied by the matrix and fibers, respectively, in a typical area A

of the interpenetrating continua normal to the fiber length , we have

A = Am 
÷ A~~, p 

(1) 
= P

mAm
/A , p (2)  

P~ A~ /A ,

= T P ) A/A
Th

, T~~~. = T
1~~~A/A~~, (2 .8 )

where the variables with the superscripts m and f represent the actual re-

spective quantities in the matrix and fiber reinforcement, respectively.

~ 
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The remaining nontrivial stress equations of equilibrium and relative stress

equations of equilibrium are

1(
33 3 + pf 3 0 , (2. 9)

•&3 3 3  + 
~ 3 + ~ (l)~ = ~~~, (2 . 10)

where

pf = p (l)
f

(l)  
+ p (2) f~ 2) 

, f 3 
= ~~~ — ~~~~ , (2 .11)

and ~~~~ and f~ 2) denote the components of body force per unit mass in the

continua representing the matrix and fiber reinforcement, respectively, which

in the case of the gravity force are the same as the body force intensities

in the matrix and f~ in the fiber reinforcement, both of which equal g.

The substitution of (2.2), (2.4), (2.5) and (2.11) into (2.9) and (2.10)

yields

a
5
u3 3 3  + B6w~’~~3 + pg = 0 , (2 .12)

+ b5w~~~3 
— a

2
w~~

1
~ = 0 , (2 . 13)

which are the one-dimensional displacement equations of equilibrium that apply

to the one—dimensional static problems treated in this section. The solution

to (2.12) and (2.13) may be written in the form

~6 ~~~~ ~~ 3 1 2
u

3 
= - — (Ae + De ) + — pgx

3 + Bx
3 

+ C ,
C5 2a 5

(1) ~~3 ~~ 3w3 = Ae + De + yg , (2 . 1 4 )

where
2 

= c
5a2/(c5b5 

— 

~~
) . ‘1 = p~6

/a
5~ 2

, (2.15)

and A, B, C and D are arbitrary constants, to be found by satisfying boundary

conditions in a given one—dimensional problem.
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In the first specific problem we consider,a total compressive force P is

applied to all the fibers crossing a given cross—sectional area of a combined

composite material body of height £ resting on a rigid surface, as shown in

Fig.l. Since the supporting surface is rigid, there is no displacement in

either the matrix or fibers at the support and we have

u3 + ~~~~~~ 0 , u3 + ~~~~~~ = 0, at x3 0. (2.16)

- Since Uk 
is defined as the displacement of the center of mass of a point of

the combined composite continuum, we have

(1) (1) 
+ 

(2) (2)  
= 0 , (2 . 17)

which with (2.16) enables us to write the boundary conditions

u
3 

= o , = 0 , at x3 
= 0 .  (2.18)

Since no force is applied to the matrix at x
3 

= £ , we have

= 0 , 7~~~~~ ) =— p ,  at x3 
= 2 , (2 .19 )

where p = P/A and which with (2.6) and

1(
LM 

= + (2.20)

enables us to write

K33
=~ 

~~~~~ ~33 = rp0, at x3 
= 2 . (2 . 21)

Now, the substitution of (2.14) into (2.18) and (2.21) yields

-o’L‘?g + ~t p e  •Yg - )~t p e

~ + 
— 2y2 1 + e2

~~

B = —  (pg L + p
0

) /~~5 ,  C —  (B6/~ 5) ’~g ,  (2 . 22)

where

= ~“a2 ) (~ + ~ 6
11c

5
) . (2 . 2 3 )



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - _ _ _ _ _ _ _ _ _ _ _

7. )

The substitution of ( 2 . 2 2 ) , with (2 .23 ) , in (2 . 14) yields the solution . The

substitution of (2 .14) , with (2 . 22)  and (2. 23) , into (2 .1) — ( 2 . 5 )  yields all

the stresses, relative stresses and interaction forces , which we do not bother

to write. However, in the absence of g for the actual stresses T~~3 
in the

fibers  and T~~3 
in the matrix at the support x3 = 0 , we obtain

In ~~o A r ~6 
~
. 1T I r + ~~~~ +~~~~~~ — b  /33 1 + r 

A
m L c

5 
C

5 
5 cosh ~ ‘~~j

T _ L 5) OOS~~~~~ J . (2 . 24)

In the second specific problem , we consider fiber reinforcement entering

a matrix and terminating uniformly at a distance i into the matrix which con—

— tinues down to a rigid support at a distance b below the junction, as shown

in Fig. 2. A total tensile force P is applied to all the fibers crossing a

given cross—sectional area . Since the continuum representing the matrix and

the continuum representing the fibers can neither separate f rom nor penetrate

into the single matrix continuum that abuts the composite at the junction .

we must have

~~~~ = 0 , ~~~~ = 0 , at x 3 = 0 , (2 . 25)

which is consistent with (2 .17 ) .  In addition , the displacement u3 of the

center of mass of the combined composite continuum must be the same as the

displacement U3 of the isotropic single matrix continuum at the j unction.

Consequently, as kinematic boundary conditions at the junction we have

= o , u
3 

= , at x3 0 , (2 . 26 )

where U3 satisfies

(X
m 

+ 2~.L~~)U
3 

— p
In

g = 0 , ( 2 . 2 7 )

“-.
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8.

and the non—trivial stress components in the single matrix continuum are g iven

by
T~ 3 

= (X m 
+ Z.L

In
)U
3 ~ 

T~ 1 
= T~ 2 = X~U3 . (2.28)

In addition to the continuity of displacement at x3 = 0 we have the continuity

of traction, i. e. ,

1(33 = T~3 ,  at x3 = 0 . (2 .29)

Since no forc e is applied to the matrix at x3 = 2, we have

~~~~~ = 0, p0 , at x3 
= 2 , (2 . 30)

which with (2.6) enables us to write the boundary conditions

K
33 

= p ,  ~&33 
rp , at x3 

= 2 . (2.31)

Since the supporting surface is rigid, we have

U
3 

= 0 , at x
3 

= — b .  (2.32)

Thus , the boundary conditions are (2.26), (2 .29), (2.31) and (2.32~ . The

solution to (2. 27) may be written in the form

+ 2p~In ) )  ~~ + Ex
3 + F .  (2 . 33)

Now , the substitution of (2 .14) and (2. 33) into ( 2 . 2 6 ) ,  (2 . 29) , (2 .31) and

(2 .32)  yields —~ Ly g + ~~t p e  ‘1g -~~ p e
0

-2~’L ‘ 21y2l 4 - e l + e

1 ~6 
- pg2 - ~~~ p Ingb )b

B — ~~~(p - pg 2) , ~~~~~~~~~~~ 
° 

m inX + 2 ~
(p -pg2) (p - pgL - ! p mgb)b

F =  (2.34)
In In Ifl In

X + 2p. X + 2 ~i

which when substituted in (2.14 ) and ( 2 . 3 3 ) ,  respectively, yields the solu—

tion. The substitution of (2.14) and (2 .33) wi th  (2 . 34) into (2.1 )— (2 .5) 

— -~~~~~~~~~~~~“-~~~~~ ~~.— ~~~- --~~~~~~~-~~~.
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9.

and (2 .28) , respectively, yields all the stresses, relative stresses and

interaction forces , which we do not bother to write. However , in the absence

f . . mof g for the actual stresses T33 in the fibers and T33 in the matrix at the

junction at x
3 

= 0, we obtain

m ~o A r ~6 f ’~ 
P
6\ ~•1. = _ _ _  — I r + ~~- - - ~~~ b _ )

33 1 + r 
A
in L c5 \ 5 c5

, cosh ~~~

= 
1 r ~~ [i - + - 

~
) cos~ ~ L1 

(2 . 35)

Using a highly simplified model, the results of this analysis are presented

in the Appendix in terms of the known material constants of the fiber rein-

forcement and matrix and the relative geometry.

3. Surface Waves

In this sectio~ we consider surface waves propagating along the free—

surface of a semi-infinite fiber reinforced composite material. Only the

case of straight-crested surface waves propagating in the direction of the

fiber reinforcement, which runs parallel to the free—surface , is considered

because the method of analysis is essentially the same for surface waves

propagating normal to the direction of the fiber reinforcement, or in any

other direction for that matter , and calculations based on the analysis are

not performed because the material constants are not presently known for any

two-constituent composite material. However , in the next section calculations

are performed for surface waves propagating both in and normal to the direction

of the fiber reinforcement using a highly simplified model of the material ,

and it is indicated that certain of the surface waves allowed by the simplified

model will not be permitted by the more general model considered in this section. 

“-.—~~~~~~~~~~~~~
.-~~——.~~~~~~~~ 
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A schematic diagram of the free—surface of the two—constituent composite

along with the associated coordinate system is shown in Fig .3. Since we

consider straight—crested surface waves propagating in the direction of the

fiber reinforcement, which is in the x3—direction , the solution functions

are independent of x 2 . Furthermore, an examination of the equations for the

two—constituent transversely isotropic composite with x3 the preferred

direction5 presented in Ref . l reveals that for x 2—independence u2 and w2

uncouple from u1, w1, u3 and w3. Hence , under these circumstances u 2 and w2

may be taken to vanish and the non-trivial differential equations may be

written in the form

(c
1 + 2c3)u 1 11 + + (B1 + B2 )w~~~ 1 + ~~ B~ w~~~~3 +

(C
2 

+ c4 ) u 3 13 + (
~ 

B~ + B3~~3,13 = p
~ 1, 

(3.1)

+ B2~~1,11 + ~~ B4u1, 33 
+ (2b1 + b 2 )w~

1
~ 1 + ~\b4 + ~~ b7~~~

1
~ 3 +

(.
~ ~~ 

+ ~5)u 3 13 ÷ (b3 + b4 — .
~~ b7~~~~ 3 — a 1w~~~ = r.;’~J~~~ , (3 .2)

(c 2 + c4 )u 1 13 + 

~~ 
+ c ~ u311 + c

5
u
3 ~~ 

+

.
~
. B~ w3 ~~ 

+ B6w3 ~~ 
= c u 3 (3 .3)

(2 B4 + B3~~~l, l3 ÷ (b3 + b4 
- ~~ b7~~~

1
~3 + ~ B4u

3 11 +

B6u3, 33 ÷ (b4 ÷ .~~ b7)w Il + b 5w
~ 3~~ a2w~

1
~ rpQ~~ , (3.4)

and the non-trivial boundary conditions may be written in the form

(3 .5)

where

~~l
= (c1+ 2 c 3 )u 1 l~~ 

(B 1+ B 2
)w~

1
~~+ (c1+ c 2 )u 3 ~~

+ (B 1+ B 3 )w~~~~, (3 ,6)
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.b11 (B1+B 2
)u
1,1

+ (2b
1

+ b
2
)w~~~~+ (B1

+B
5

)u
3 ~~

+ (b2 + b 3
)w~~~ , (3.7)

• 1 (1) (1)

~l3 
= c4 (u3 1+ u 13 ) + .

~~
. B~~(w3 1÷ w 1 3

) (3. 8)

~l3 4 B4 (u1 3~~ u3 l~ 
+~~b4 - 4 b7~~~~~~+~~b4+ 4b 7~~~~~~, 

(3.9)

and everything vanishes as x1 
-
~~

As a solution of the differential equations we take

i (1]x~ +~,x3-Wt) (1) ~ (T~x1+~x3—w t)
u~ = A ~e , w~ B 2e , o~=l ,3 , (3.10)

which satisfies (3.1) - (3.4) provided

(Q11 
— pW

2 )A
1 
+ Q12

B1 + Q13A3 + Q14B3 = 0 ,

+ (Q22 
— rpw2)B

1 
+ Q23A3 + Q24B3 

= 0

Q31A1 + Q32B1 
+ (Q33 

- pw 2
)A 3 + Q34B3 = 0 ,

Q41A1 + Q42B1 + Q43A3 + (Q
44 

— rpW
2)B

3
=0 , (3.11) —

where

= (c
1 + 2c3

)~~
2 

+ c4~~
2

, Q12 
= = 

~~l 
+ B2 )

~
2 

+ $~~

= Q31 
= (c 2 + c4 )~~~ , Q14 B4 +

= (2b
1

+b
2)11

2 
+ (b4 + 4b7)~

2 + a 1, Q23 =Q 32 (4 B4 +B 5)~~ ,

= (
~~

+
~ 

— 4 b 7)~~~, Q
33 

= c
4~
2 + c

5~
2 

.

= = 4 B~’fl2 
+ B6~

2 , Q44 
= + 4 b7)T1~ + b5~

2 
+ a2 . (3 .12)

Equations (3.11) constitute a system of four linear homogeneous algebraic

equations in A1, B1. A3 and B3, which yields non-trivial solutions when the

determinant of the coefficients of A1, B1, A3 and B3 vanishes , i.e., when

- . .— 
~1 •~ -•_ -- - _._ _-_ __.__-___-• .__- —--• --—--- . —-—• .-—•—..-— - - ————— ...-—--—.~• - - - -—. -

.
~
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— pW
2

) 
2

— rpw 
2 0 . (3 . 13)

— pw ) 
2

Q42 Q43 (Q44 
— rpw

Equation (3.13) is a quartic in w
2
, ~

2 and ~2 and, hence, for a given w and ~

there are four in general complex ,~2 Since the solution functions must vanish

as x1 
-. 

~~ , only those ( n= l , 2 , 3, 4) with positive imaginary part are

• . . . (n) . .admissible. For a given 11 , three of the four equations in (3 .11) yield

amplitude ratios, which we denote

(3 .14)

All four admissible solutions at a given ~ and w are required in order to

satisfy the four boundary conditions in (3.5). Consequently, we take

4 . (n)
— ~ (n) (n)  i~1 x1 i (~x3 —wt)

u — C A e e
0’ ~—

• - (1) 
c B ~~~e

1
~~~~

X
1
e

1 X
3~~

t)
, ~~=l,3 , (3.15)

which satisfy (3.5) provided

n~1 
~~~~~~~~~ = 0 , = 1, 2 , 3 , 4 , (3 .16 )

where

L
(n) 

= (c
1+2 c 3

) A~~~ + (B 1+ B 2 ) B~~~ + (c
1
+c

2
)~ A~~~ + 

~~~~ 
B 3

)~~B~~~ .

~~~~ = (B1+B 2 ) A~~~ + (2b 1+b 2 ) B~~~ + (B
1

+ B
5

)~~ A~~
’
~~ + (b 2 + b 3 B~~~

~~~~ = C 4~ A~~~ + 4 ~~~~~~~ + c4 A~ ’~ + 4
~~~~ =4 B4~A~’~ + (b4 _ 4  b7 )~ B~~~ +4 B 4~~

(n)
A~~~

) 
+ (b4

+
2 b7 Yfl

(n)
B~~~

)
. (3 .17) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Equations (3.16) constitute four linear homogeneous algebraic equations in

the c ~~~~~
, and for a non-trivial solution the determinant of the coefficients

must vanish , i . e.,
(1) (2)  (3) (4)

~~~~ L~
2
~ L~

3
~ L~

4
~2 2 2 2 = 0 . (3 . 18)

(1) (2 )  
L~

3
~ 

(4)L3 L3
(1) (2 )  (3) (4)

L4 L4 L4

If the constants are known, a calculation proceeds by selecting values

for ~ and w, which enables the determination of the four from (3 .13 ) and

the attendant amplitude ratios from (3.11) . Then everything in (3.18) is known

and either it is satisfied or it is not, If (3.18) is not satisfied, change

• either ~ or w and repeat the entire calculation until (3 .18) is satisfied.

• Experience with surface waves indicates that there will be one w at a given ~

that satisfies all conditions, i .e . , (3 .13) and (3 . 18). However , since the

constants are not known for any two-constituent composite material, a calcula-

tion cannot be performed . In the next section calculations are performed for

• a highly simplified version of the model for which the constants can be esti-

mated from the known constants of the two constituents in the composite.

4. Surface Waves and the Simplified Model

In this section we simplify the equations for the two-constituent trans-

versely isotropic composite by reducing the model sufficiently that the

• material constants of the composite can be estimated from the known constants

• of the individual constituents of the composite while still retaining certain

of the essential characteristics of the composite. Since in the simplified

model the constants are essentially known, calculations can be and , indeed ,

are performed. for surface waves propagating in two-constituent transversely 

~~~~ •~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



14 . p
isotropic composite materials. The simplified model we are co~siiering is

for a fiber reinforced composite material consisting of an elastic mat rix

containing uniformly distributed continuous fibers extending in the x
3
-direction,

in which the fibers occupy a small fraction of the total composite volume.

On account of the lat ter  condition in the reduced model it is assumed that  the

stresses in the matrix are related to the strains in the matrix by the consti-

tutive relations of linear isotropic elasticity and are independent of t)~e

strains in the fibers. Similarly, the stresses in the fibers are assumed to

be independent of the strains in the matrix. It is further assuneci that all

stress components in the long narrow fibers vanish save the axial stress ~~~~~~

which may then be written as a function of the axial strain in the fibers only.

Although this latter assumption seems questionable to us in general we i~ake it

anyway. Then the only interaction between the matrix and the fibers remaining

is the volumetric interaction term LF12 
which from (2.5) and (2.7) takes the

form

LF12 
— (1 + i )  

1
a
1
w~

1
~ . ‘~F~

2 = —  (1 + r) 1a 2w~’~ , p = 1, 2 . (4 .1)

• At this point it should be noted that the aforementioned assumptions mak? the

reduced model for the linear case identical with that of Martin , Bedford and

Stern4.

On account of the assumptions made in the simplified model of the two—

constituent composite, it is advantageous to write the equations in terms of

the infi nitesima l displacement fields of each constituent instead of the

center of mass and relative displacement fields. To this end we write
6

(1) (1) (2)  (2)
U K U

~<
+ W J< , U K U

K
+ W

K 
, (4 .2 )

which with the three —dimensional version of (2.17)

hi1 • •
_  ~~~~~ • .~~~~~~~~ -— —.~~-~~~--~~- -~~~~



- . .-—---~~~~ --- --- - - - —~~~-,,----- —•-- . •- -

15.

(1) =-~~~~~
2

~ , (4 .3)

enables us to write

• U
K
= ( l + r ) 1(~~~~~ + ~~~~ , = (l + r) (u~~~~- u~~

2
~~) . (4 .4)

From (2.6)
i 
and (2.20) we obtain

T~~
1

~ = (1 + r)~~ (r
~~ M + 

~ LM~ ~~~~ = (1 + r)
~~~
(
~~ M 

- 

~LM~ 
(4.5)

Substituting from (4.4) into the constitutive equations for the two—constituent

isotropic composite
7 and then into (4.5), and introducing the aforementioned

assumptions of independence of the stress in the matrix continuum on the strain

in the fiber continuum and vice-versa , which introduces relations among the - •

more generally defined material constants, and the further assumption of uni-

axial stress in the fiber continuum, we obtain

(1) (1) (1) (1)
T

LM 
= X UK K ó

~~~ 
+ ~L (u

L M  + uM L
)

(2)  (2) ( 2)
T

LM 
E U3 3 ~~LM . (4.6)

where ?~. and 
~ 

(1) are the Lam~ constants of the matrix continuum and E (2) is

Young ’ s modulus for the fiber continuum, which are related to the respective

constants in the matrix and fibers by

(1) 
= XmAm/A 

(1) 
= 

m
A
in

/A E 
(2)  

= E~ A~ /A .  (4 . 7)

Since the fiber reinforcement in this simplified model is restricted to occupy

a small fraction of the total composite volume, (4.7) enables us to write

X (1) 
= 

(1) 
= ~L , E 

(2)  
= E~ NS~~, (4 .8)

where S~ is the cross—sectional area of each fiber and N is the number of

fibers per unit area , In order to complete the constitutive equations for the

reduced model we substitute from (4 ,4) into (4.1) to obtain 

—--,
~~~~~~~~~ -~~~~~~-- • ,- - - -  -~~~~~~~~~- • • • • •• , - ~~~~~~~ .—
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LF
12 

- a
1

(u - u~
2
~~) , 

L~ 12 = -~~2 (u~~~ - u~
2
~~) , (4 . 9)

where

a], 
= a

1
/ (l  + r) 2 , 

~2 a2/( 1 + r) 2 
. (4 . 10)

• The stress and relative stress equations of motion in the absence of

body and relative body forces take the respective forms

= 

~
‘M’ ~ LM,L 

+ 
~M 

= ~~~~~~ , (4.11)

which with (2.6), (2.7), (2.20) and (4.4) enables us to write

T~~
1
~ + 

LF
12 

= p ~
l)..(l) 

, (4 .12)

T
I~M~L 

— 
L
F

12 
= 

~ 
(2)..(2) 

(4.13)

the latter of which , on account of the assumption of uniaxial stress in the

fibers yields

T
~ 3~ 3~ LM 

— 
LF

12 ~~(2 ) . . ( 2 )  (4 .14 )

Substituting from (4.6) and (4.9) into (4.12) and (4 .14 ) and employing (4 .8 ) ,

we obtain

-n in (1) m — (2)  (1)
(X + i~ 

) u~(~ Q~ + ~L UL 1 (~( 
+ al

(u
L 

- uL

+ 
~~2 

- a
l

) ( u
L 

- U
L~~~~ 3L = P (4.15)

~~~~~~~~~~~~~~~~~~~~~ 
— u~

2
~ ) + (a 2 a1) ( (1) _ u

J~
2
~
)6
L3 

= 
( 2 ) . . ( 2 )  (4 .16 )

which are the displacement equations of motion of this highly simplified model

of the two—constituent composite material. Equations (4.15) and (4 .16) are

identical with the equations of Martin , Bedford and Stern4
, who have provided

an approximate procedure for estimating the constant a 2 in terms of the known

constants of the individual constituents in the composite and the geometry. 
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Their analysis provides the result
in 2 2 2 2

= 
(
~ /h ) ( l  — ~ lb ) 

, (4 . 17)2 
~ log (h/6)  + ~~ o

2
/h~ - ~~ - + ~ (~m/~f) (1 - ~~

2
/h

2
)

2

where

= ~j9~/2i-r)s
2 

(4.18)

and ~ is the fiber radius , 1~i is the radius of a cylinder, each of wh ich encloses

a single fiber in the hexagonal array and abuts all adjacent cylinders, s is the

f iber spacing and and are the shear moduli of the ma tr ix and f iber

material, respectively. However, the constant 
~l 

still remains undetermined

in this simplified description and it does not appear to be possible to

estimate it in some approximate manner because an appropriate problem yielding

a simple solution of a full linearly elastic boundary value problem cannot be

found. Nevertheless, since we are introducing this highly limited simplified

description in order to obtain some numerical results, we take the rather

arbitrary course of assuming that  Under these circumstances all

material constants in the equations are known and calculations can readily be

performed .

As in the case of the more general model, in the consideration of straight-

crested surface waves propagating in the direction of the fiber reinforcement

(x
3
-direction), the solution functions are independent of x 2 and u~~~ and

vanish. Under these circumstances we have the differential equations (4.15)

and (4.16), with x2
-independence understood and ~~~~ 

) , along with

the non-trivial boundary conditions

= T
L~~ 

= T~~3~ 
= 0 , at x1= 0 . (4 . 19)

Since -r
~~r 

and vanish identically in the simplified model , we have only

the two non-trivial boundary conditions
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= 0 , at x1 = 0 , (4 .20)

It is our belief that the foregoing is essentially the reason that the surface

wave solutions in the simplified model yield upper (optical type) surface wave

branches, which we feel will not be in conformity with results that would be

obtained from the more general model .

As a solution of the differential equations we take

(1) i (flx +~x —wt ) ( 2 )  i (T~x +~x —wt)
u A e U B e 1 ~ ~~~1 3 (4 .21)a’ ‘ a’ a’ ‘

which satisfies (4.15) and (4.16) provided

(1) 2 -~— P w )A~ 
— a

1
B
1 

+ P13A3 
= 0 ,

(2 )  2
— ‘~A1 + (a 1 

— P w )B 1 
= 0 ,

+ (P 33 
— p ~~~w2 )A 3 — ~ 2B3 

= 0 ,

— a
2A3 

+ (P
44 

— p~~
2
~ w 2 )B 3 = 0 , (4 . 2 2 )

where

~ll 
= (Xm +2~

m)~
2 

+ ~~~~~~~~ 
~ = ~ (X m 

+ ~~in)1~~~

= ~~~~~~ + (A m + 2 ~
m )~~

2
+~~ P44 E~

2
~~~

2 
+~~ 2 . (4 . 23)

Equations (4 .22) constitute a system of linear, homogeneous algebraic equations

in A1. B1, A3 and B3, which yields non-trivial solutions when the determinant

of the coefficients of A1, A3, B1 and B3 vanishes , i.e., when

--~~~~ -- — -—~~~~~ -- -—— •
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- 
~~ 

(1)~~2 
- a

1 
P13 0

—~ — (2)  2— a
1 

a1 — p  W 0 0

(1) 2 — = 0 . (4 .24)
P31 0 P33 — p  (U a

2
—, ( 2)  20 0 — a

2 
p

44 — p  w

Equation (4.24) is quadratic in ~2 cubic in ~
2 and quartic in w2, and, hence ,

for a given w and ~ there are two in general complex ,i
2 Since the solution

functions must vanish as x1 
-

~ ~ , only those (n= 1,2) with positive

imaginary part are admissible. For a given three of the four equations

in (4.22) yield amplitude ratios, which we denote

~~~~ : ~~~~ ~~~~ . (4 . 25)

Since only two non-trivial boundary conditions remain in (4.20), the two

admissible solutions are adequate and we take
2 . (n) .

u~~~ = ~ c
(n)

A
(1
~
)
e~~~ 

x1 
e
1

~~~~ 3~~~
t )

a’ L a’n=1

u~
2
~ = 

n~ l 
C

(n)
B~~~) 

e 1 e 3 
, (4 . 26)

which satisfy (4 .20) provided

n~ 1 

0
(m)

~~~~~~
)
~~

m 
+ ~~

m A
(n) 

+ ~X
m
~A~~

)] = 0 ,

n~ 1 
C

(n) (~~ A~~~
) 

+ Il
(n1)

A~
T
~
)

J = 0 . (4 . 27)
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At this point it should be noted that on account of the simplified model

Eqs. (4.27) do not contain the ~~~~~ Equations (4.27) constitute two linear

homogeneous algebraic equations in C~
’
~ and ~~~~~ and for a non-trivial solu-

tion the determinant of the coefficients must vanish, i.e.,

(xm +2 m)~~
(l)

A
(l) 

+Xm~A~~
) 

(Xm +2~
m)~~

(2)
A
(2) +X m~A~

2)

= 0 . (4 .28)

+ T)~
1
~A~

1
~ ~(2) + 

2
~ A~

2
~

Equa tion (4.28) is a complex algebraic equation, both the real and imaginary

parts of which must vanish simultaneously. Solutions, i.e., values of w

and ~ satisfying (4,24) and (4 , 28) are found numerically in a manner similar

to that discussed in the paragraph following Eq. (3. 18).

Calculations have been performed for a set of material parameters cor-

responding to a glass fiber reinforced phenolic resin4
, the relevant constants

of which are

pitt 
= 0.00013 lb—sec 2/in4

, E~ = 12.4 x io6 lb/in2 ,

p
f 

= 0.00026 lb—sec
2/in4, = 10.2 x io6 lb/in2 ,

= 0.86 x 10
6 lb/in2 , = 0.37 X 106 lb/in

2
, (4.29)

for a fiber diameter of .Ol in. for the volume percentage of reinforcement of

5.67%, which corresponds to s = .04 inches. The results of the calculations

are plotted in Fig.4, which indicates the existence of an upper (optical

type) surface wave branch in addition to the lower (acoustic type) branch.

As already noted, we do not believe that the upper surface wave branch

actually exists, but that its existence is a consequence of the reduced

coupling in the simplified model. A similar analysis has been performed for

straight-crested surface waves propagating normal to the direction of the

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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fiber reinforcement and the results of calculations based on this analysis

are plotted in Fig.5. Again the results indicate the existence of an upper

as well as a lower branch and we do not believe that the upper branch

actually exists for the aforementioned reasons. In Figs .4 and 5 we have

drawn vertical lines which correspond to a wavelength five times the spacing

of the fiber reinforcement. We do not believe the curves to be valid much

• beyond these vertical lines because of the nature of the model of the com-

posite we have employed, and we draw them considerably beyond their range

of validity simply to indicate the calculated behavior. The important curves

in Figs.4 and 5 are the lower acoustic type branches, both of which are

drawn to a larger scale in Fig .6 .  Note the di f ference in dispersion for the

two directions of propagation considered. This very precise dispersion property

of surface waves could well be used as a means of nondestructively evaluating

the distribution of the fiber reinforcement in and the integrity of the

bonding to the matrix.
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• APPENDIX
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‘ 
In this Appendix we present the solution to the second problem treated

in Sec.2 , i. e.,  the one associated with Fig. 2 , using the reduced equations

presented in Sec.4 and omitting the influence of gravity.  In this case the

• differential equations (4.15) and (4.16) with L = 3 and the constitutive

cquations (4 .6)  with L H = 3 and 
~~~~~~ 

all in the absence of any x
1
— ,

x 2
—dependenc e and inertial terms respectively replace Eqs . (2 . 12) , (2. 13) ,

( 2 . 2 )  and (2.4). Equations (2.27), (2.28), (2.30) and (2.32) remain unchanged

and (2.26 ) and (2 . 29)  are replaced by

= ~~~~ , = at x3 = 0 . (Al)

(1) ( 2 )  in
+ T

33 
= T

33 , 
at x3 = 0. (A2)

The solution functions given in (2.14) and (2.33) are replaced by

-a’x
= C

1 
+ C

2
x
3 

+ C3e ~ + C4e ~~, U3 = C
5 

+ C6x3

= C
1 
+ C

2
x
3 

+ [1 — 
2 (X m ÷ 2 ~

m
)](C ~~~ + C

4
e

3
) , (A3)

where

a’ = (~~~ (A~~ + 2 m ÷ E
( 2)

)/E
( 2 )

(~
m 

+ 2 in
) J ½ (A4)

Substituting from (A3 ) into (Al ) , (A2 ) , (2 .30)  and (2. 32) , we obtain

p b  -p~~C
1 

= 

~
m
~~ 2

m ‘ 
C
2 a’~p0 , C

3 = 2 co:h ~~~

p b  p
C = 

2 cosh a’L ‘ 
C5 m in 

, C6 
= , (A S)

A +2~.i A +2~
where

B = l/a’(X
in 

+ 2~~~ + E~~
2
~~) .  (A6 )
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P.2.

- The actual stresses T~~3 
in the fibers and in the matrix at the j unction are

• given by 
f

• p in in
— ° rE (2) + X + 2 ~~1T33 Am 

+ 2p~ + E~
2
~ 

L cosh a’2 ~ 
‘

(P~A~/A) (A in 
+ 2

in
)

T
33 

= 

X
m + 2 ~

m + E
(2)  [i - 

cos~ a’s]’ 
(A7)

• where

• 
= p A/A

t’
, E~

2
~ = E~A~/A , (A8 )

and p~ denotes the actual stress in the fibers before they enter the matrix. 
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FIGURE CAPTIONS

Figure 1 Schematic Diagram of Loaded Fiber Reinforced Composite
- 

. Supported on a Rigid Base

Figure 2 Schematic Diagram of Loaded Fiber Reinforced Composite with
Reinforcement Terminating Uniformly in Matrix Some Distance
Before Support

Figure 3 Schematic Diagram Showing Surface Wave Propagating Aiong
a Free Surface of a Fiber Reinforced Composite and the
Associated Coordinate System

Figure 4 Dispersion Curves for Surface Waves Propagating in the
Direction of the Fiber Reinforcement

Figure 5 Dispersion Curves for Surface Waves Propagating Normal
to the Direction of the Fiber Reinforcement

Figure 6 Acoustic Type Dispersion Curves for Surface Waves
Propagating Both in and Normal to the Direction of the
Fiber Reinforcement
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